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The majority of LGCAs has spurious conservation laws, the so-called staggered 
invariants, first discovered by Kadanoff, McNamara, and Zanetti. Consequently 
there are additional hydrodynamic modes of diffusive type, which modify mode 
coupling theories and the nonlinear fluid dynamic equations. The diffusivities of 
these staggered modes are evaluated in the mean field approximation for 
LGCAs on triangular lattices, starting from the Green-Kubo formulas for the 
staggered diffusivities. 
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1. I N T R O D U C T I O N  

The majority of cellular automata fluids (CA) (I 8) possesses, apart from the 
usual conservations laws for particle number N, total momentum P, and 
possibly total energy H, additional conserved quantities, the staggered 
invariants, H o. They are caused by the extremely simplified dynamics 
of LGCAs, mainly due to the discreteness of both space and time and due 
to the local conservation rules. In CA-fluids out of equilibrium, these 
spurious invariants give rise to slowly decaying staggered densities ho(r, t). 
At the linear level this leads to new modes or elementary excitations, a 
phenomenon analogous to fermion doubling in lattice gauge theories, f9) 
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Consequently, the set of nonlinear fluid dynamic equations for these 
CA-fluids has to be extended with additional equations that couple 
in a nonlinear fashion to the standard Navier-Stokes equations. Also, 
additional nonlinear coupling terms of C(h 2) appear in the Euler part 
of the Navier-Stokes-equations. (1'2'1~ 

Therefore, the existence of these slow modes will affect the time evolu- 
tion of the macroscopic flow field and that of other hydrodynamic densities 
in CA-fluids. The extra appearance of (9(h~) terms in the Euler equations 
will also modify the mode coupling theory. (1'6'm) The long-time tails in 
current-current correlation functions will in general have additional 
long-time contributions from pairs of staggered modes. (1'6'm 12) 

At the level of linear excitations the staggered modes do not couple to 
the standard fluid modes. They are purely diffusive and their Fourier trans- 
form satisfies 

~tho(q, t)= -q2Ao(O) ho( q, t) (1.1) 

The staggered diffusivity Ao(4) depends on the direction ~ of the wave 
vector q, and can be expressed as a Green-Kubo relation. (2'6) With respect 
to the standard transport coefficients, Rivet (13) was the first author to study 
the Green-Kubo relations for the shear viscosity in CA-fluids. 

To study the effects of the spurious modes on nonlinear hydrodynamic 
equations and mode coupling theories, knowledge of the staggered dif- 
fusivities is indispensable. The goal of the present paper is to present a sim- 
ple method to evaluate explicitly the Green-Kubo formulas for staggered 
diffusivities. Up till now it was only possible to evaluate the Green-Kubo 
relations for the standard transport coefficients, such as viscosities and dif- 
fusion coefficients314) In Boltzmann approximation, the standard transport 
coefficients are expressed as matrix elements of the inverse collision 
operator Q. It will be shown that the staggered diffusivities involve matrix 
elements of the inverse of (A +f2), where the operator A is related to 
discrete translation over a lattice distance. We also note that identical 
results can be obtained ~12) starting directly from the Boltzmann equation 
without using the Green-Kubo formalism36) 

The CA-fluid models of interest here have only staggered momentum 
densities as additional slow modes. Examples are the six- or seven-bit 
F H P  models ~ls) on the triangular lattice, the quasi-three-dimensional 24-bit 
FCHC model, (3'16) and the thermal eight- or nine-bit models on a square 
lattice and their three-dimensional extensions with energy conserving 
collisions33 5) In a Lorentz gas on a square lattice (s) or in the four-bit 
CA-fluid on the square lattice there exist also staggered number density 
modes, ~7) which will not be considered here. 

This paper is organized as follows: in Section2 the staggered 
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invariants are presented together with the Green-Kubo formula for the 
staggered diffusivity, which describes the relaxation of the corresponding 
conserved density. In Section 3 the kinetic propagator is constructed in the 
mean field or Boltzmann approximation. In Section 4 this propagator is 
diagonalized and the usual transport coefficients are obtained. In the last 
section the staggered diffusion coefficients are evaluated explicitly. 

2. S T A G G E R E D  D I F F U S I V I T I E S  

The microscopic definition of the staggered momentum density is 
given in terms of occupation numbers: 

ho(r, t) = ~ ( - ) t +  O.r Cioni(r, t) (2.1) 
i 

where ni(r, t) is the occupation number of the ith link ei at lattice site r and 
Cgo = 0.e~ is its 0 component. A b-bit model contains a set of b different 
velocity states e i per site, which includes in general the nearest neighbor 
lattice vectors (FHP models), or, in the square lattice models, (4) even next 
nearest neighbor lattice vectors and possibly a rest particle, e /=0.  The 
vectors 0 labeling the staggered modes are reciprocal lattice vectors, 
implying that 0 . r  is an integer. In the FHP models there exist three inde- 
pendent staggered momentum densities, corresponding to 0 = (0, 2/,,f3), 
0' = ( - 1, - l/x/3), 0" = (1, - l/x/-3 ). In the eight- or nine-bit square lattice 
models there are two independent staggered momentum densities with 
0 = (0, 1) and 0 ' =  (1, 0). 

The macroscopic averages of (2.1) over some nonequilibrium state and 
the long-wavelength components of the microscopi c density (2.1) decay 
for large times according to the diffusion equation (1.1). The staggered 
diffusivity is given by (6) 

Ao(4) = A~(O) + Ag(O) 

= lim lim Z~ -~ ~ CiqCio[~(q + rcO, s +  "ai)- 1 3]0 CjqCjo 
s ~ O q ~ O  i,j 

(2.2) 

(provided the limits exist). The term A0k(q) containing F is referred to as 
the kinetic part; the term A~(0) obtained by setting F = 0  is referred to 
as the propagating part of the transport coefficient. Here Cq = 0 . c  and 
c o = 0. c are the components of e parallel to the unit vectors c) and 0, 
respectively. Furthermore, F is the Fourier-Laplace transform of the 
kinetic propagator or equilibrium time correlation function 
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Fij(q, s)= ~ e st 2 --iq-r e <~ni(r , t) 6nj(O, 0)> 
t = O  r 

1 
=~(~ i (q , s )n* (q ,O) )=- (~ , (q , s ) tn j (q ,O)>  (2.3) 

The average ( . . . >  is taken over an equilibrium ensemble and M is the 
number of sites in the lattice. The symbol ni(q, t) denotes the Fourier trans- 
form of the fluctuation in the occupation number &i(r, t) = n~(r, t) - (ni> 
and fi~(q, s) is its discrete Laplace transform. The Fourier-Laplace trans- 
form of (2.1) reads in this notation "~o(q,s)=Zjcjofij(q+ztO, s+~i  ). 
Finally, the equilibrium susceptibility or equal-time correlation function is 

Z0 = < ho(q) l ho(q) > = ~ C~oSCi =- Z (2.4) 
i 

where the fluctuation formula (n~(q) I nj(q)> = ((6n~)2> ~ =  z i ~  has been 
used. The diffusivity Ao(4)= 4 ~ 0 ~ ( 0 )  depends on the second-rank tensor 

field ~ e ( 0 ) =  ~ 1 ( ~ - 6 ~ 0 ~ ) +  ~20~0~. For all lattices with inversion sym- 
metry this tensor contains two scalar diffusion coefficients ~1 and ~2, so 
that Ao(4)= ~1 + (~2-  ~1)(0 0) 2. They are given by 

~1 lim lira Z- l~c~C~o[P(q+~O,s+~i )  -I-3 = 2 i s % C j o  

s ~ O q ~ O  i,j  (2.5) 

~2 = lim lim Z -~ ~ C2o[I'(q + riO, s + zti) - �89 ~j C2o 
s ~ O q ~ O  i , j  

provided the limits in (2.2) exist. Furthermore, c• = 0 a ' e  with 0• a unit 
vector perpendicular to 0. These coefficients can be split into two parts, the 
kinetic part ~ and the propagation part ~P, defined as 

r 1 6 2  k =  - - � 8 9  C 2 C 2 i& iO 

i (2.6) 
I 4 

~P2 = ~2 - -  ~k  = - - ~  2 Cio 
i 

From here on we restrict the presentation to athermal models where 
energy and number conservation are equivalent (single-speed models) or 
where energy is not conserved at all. In both cases ( n ~ ) - f = p / b  is the 
reduced density (0 ~< f ~< 1) and p the average occupation per site. Further- 
more, 

= <(fin~) ~ ) = f(1 - f )  
(2.7) 

z= 2C o= 2 2 C ix ~- xbc o 
i i 

for a b-bit d-dimensional model with sound velocity Co. 
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To display clearly the difference between the staggered diffusivities 
(2.2) and the standard transport coefficients, we also quote the Green- 
Kubo relation for the standard transport coefficients, 

L = lim lim )~-' ~ w(e,)[P(q, s ) -  �89 w(%) (2.8) 
s ~ O  q ~ O  i , j  

With the choices w(e) = CxCy and w(e) = d %2_ Co z we obtain, respectively, 
the shear ( L =  q/p) and bulk viscosity (L = (/p). 

It should be noted that the formulas for 41 and 42 as quoted in 
Eq. (5.13) of ref. 6 are not entirely correct, but that for Ao(O) is correct. 
Also, Zanetti's formula (2) for Ao(gt) contains a misprint. (17) The "projected" 
current Jj in his Eq. (16) should be replaced by the current Jj as given in 
(2.2). 

3. K I N E T I C  E Q U A T I O N  

The time evolution of CA-fluids consists of a collision step over the 
time interval ( t - ,  t +) with t-+= t i e  (e,L0) and a propagation step over 
the interval (t +, t -  + 1). The collision step can be represented by 

n,(r, t + ) - n i ( r ,  t - )=l i (n ( t  )) (3.1) 

and the propagation step by 

ni(r, t + ) = n i ( r  +ei ,  t -  + 1)--- Sn~(r, t -  + 1) (3.2) 

where S is the free streaming operator. 
The collision term is nonlinear in the occupation numbers, i.e., in a 

b-bit model, Ii(n) contains at most b 6n's, each referring to a different 
velocity channel. Its explicit form has been discussed extensively in the 
Hterature (15'16) for different sets of collision rules, lattices, and dimen- 
sionalities. The collision rules may be deterministic or stochastic; they con- 
serve particle number and momentum, but not necessarily energy. From 
now on all occupation numbers ni(r, t)=n~(r, t +) refer to postcollision 
states and the combined evolution equations (3.1) and (3.2) can be 
expressed as 

n / ( r , t + l ) = n i ( r - c z ,  t ) + I i ( S  in(t)) (3.3) 

By iterating this equation t times, one obtains the formally exact series for 
ni(r, t) expressed as a polynomial of degree b t in the occupation numbers 
nk(r', 0). This series can be substituted in (2.3) to obtain the exact time 
evolution of the kinetic propagator r(q,  s). 

822/62/1-2-t9 
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Here we only consider the approximation of uncorrelated collisions, 
also referred to as the mean field or Boltzmann approximation. It implies 
that one neglects the occurrence of recollisions of particles that did collide 
before. Therefore any term of degree m (1 ~<m ~<b') in this approximate 
series contains m occupation numbers referring to m different one-particle 
states {r', er}. In the same approximation the kinetic propagator (2.3) can 
be calculated straightforwardly by multiplying the approximate series for 
6ni(r, t) by cSnj(0, 0) and averaging over an equilibrium ensemble. Using 
the property (nl(r',  0) ~Snj(0, 0))  = ~r one can factorize the average of 
a product of n's into a sum of products, i.e., 

f6nj(O) f l  n~(r/))=~cf  m-I  ~ (~lj(~r,O (3.4) 
/=1 1=1 

where f =  (h i )  and one can resum the series as a tth power of a single- 
time-step evolution. This mean field approximation is implemented most 
simply in Eq. (3.3) by making the replacement n i = f + g n ~ .  The collision 
term becomes 

Ie(n) = L ( f )  + ~ (2~6nk + ~ s + "" (3.5) 
k k,l 

and one neglects all nonlinear terms in 6n~. On account of the relation 
I~(f)  = O, the time evolution for uncorrelated collisions becomes 

cSn~(r, t + 1 ) = 6n,(r - ci, t) + ~ f2~6nj(r - ej, t) (3.6) 
J 

After Fourier-Laplace transformation [see (2.3)], we obtain the solution 

( 1 ) nk(q, 0) (3.7) 
g~(q, S) = ~, [exp(s + iq" c~)] exp(s + iq �9 e) - 1 - f2 ~k k 

where (A(c))e j=A(ci )6  o is a diagonal matrix. Substitution of (3.7) into 
(2.3) and use of the relation (ni(q,  O) I nj(q, 0 ) )  = ~c6~j yields for the kinetic 
propagator in the mean field approximation, 

P•(q, s) = [~c exp(s + iq .  ei)] exp(s + iq .  e) - 1 - f2 o 

In the same approximation the staggered diffusivities become 

�9 c j• Cjo = -  Ci~ Cio - ~ ' ~ ' J V - ~  ij 

(3.9) 

r = 5-T-6+  
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where Ar is a diagonal matrix. We 
further used the relation 

cio exp(in0 �9 el) = 0- e, ( - )0.r = -Cio 

because the definition of the reciprocal lattice vectors 0 guarantees that 
0" c~ equals _+ 1 or 0 for all i. Consequently, Ag= 1 + ( - )0 . r  is either +2  
or 0. In a similar fashion one finds for the standard transport coefficients (11) 

L= +g  w(cj) 

Schmitz and Dufty (~8~ have shown that the matrix of transport coef- 
ficients is nonnegative definite. This implies that the eigenvalues 2~ of 12, 
defined as 

12u~ = -2~u~ (3.11) 

satisfy the inequalities 0 ~< 2~ ~< 2. 

4. D I A G O N A L I Z A T I O N  OF ~ FOR T H E  FHP M O D E L S  

In this section we construct a basis of eigenvectors for 12 in the six-bit 
and seven-bit F H P  models, defined on the triangular lattice by 
orthogonalizing the tensor products c~c~c.~... (a, fl, 7 . . . . .  x, y). No restric- 
t i ons  are required on the collision rules except that they support the 
conservation laws of number and momentum and that they are invariant 
under the group of symmetry transformations of the triangular lattice, 
being rotations over n/3 and reflections in the x and y axes. 

Let us start with the seven-bit model. We label the velocities as 
Co = (0, 0), ci = (cos �89 1), sin 1re(i- 1)), i = 1, 2 ..... 6. The eigenvectors 
associated with the conservation laws (where 2~ = 0) are 

Ul= 1 = (1, 1, 1, 1, 1, 1, 1) 

Uz=Cx= �89 2, 1, - 1 ,  - 2 ,  - 1 ,  1) (4.1) 

u3 = cy= 1 , /5  (0, 0, 1, 1,0, -1 ,  - 1 )  

We complete the basis with the following vectors: 

u4=CxCy=lx/3 (O, O, 1, - 1 , 0 ,  1, --1) 

2 2 1 0 us=cx--Cy=~( , 2 , - 1 , - 1 , 2 , - 1 ,  1) 
(4.2) 

u6=(4c2z-3)Cx=(O, 1, - 1 ,  1, - 1 ,  1, - 1 )  

1 2 UT=yC -Co  2 = 1 ( - 6 , 1 ,  ! , 1 , 1 , 1 , 1 )  
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2 3 where the sound velocity Co for the seven-bit F H P  models is given by c o = 
on account  of Eq. (2.7). These vectors form a complete or thogonal  basis of 
the seven-dimensional space. 

The next step is to prove that these vectors are eigenvectors of O. To 
do this, we construct  Table I, showing how the vectors u4,..., u7 change 
under rotat ions and reflections, operations that leave f2 invariant (the 
double ar row indicates invariant subspaces under the action of the sym- 
metry transformation).  Notice that these symmetry  transformations are 
simply permutat ions of the second through seventh component  of  the 
7-vectors in (4.1)-(4.2). Consider first the reflections in that  table. The signs 
show that  { u 4 } ,  {u6}, {us, u7} are invariant subspaces under the act ion of 
/2. The rotat ions over re/3 decompose the {us, u7} subspace into two one- 
dimensional invariant subspaces because u7 has a well-defined parity, but  
u s does not. Then, the seven-dimensional space has been decomposed into 
seven one-dimensional invariant subspaces of g2. As a consequence, /2 is 
diagonal in this basis. 

F r o m  Table I more  information can be obtained using the invariance 
o f / 2  under a rotat ion over ~/3. A rotat ion over r(3 applied to u4 gives a 
linear combinat ion of u4 and us  and vice versa. Using that both u4 and u5 
are eigenvectors, it is easily proved that  ~4 = 25" 

For  the six-bit model  the proof  proceeds in a similar fashion. Here one 
has a six-dimensional basis obtained from (4.1) and (4.2) by dropping the 

f i r s t  component .  The vector u7 vanishes identically because 2c 2 = co 2 = 1 for 
all i. Table I remains valid. By analyzing the reflections, it follows that  
{u4}, {u,}, {u6} are invariant subspaces. The eigenvalues for the FHP- I ,  
II, and I I I  models are listed in Table II. 

The use of this eigenvector basis greatly simplifies all calculations. 

Table  I. S y m m e t r i e s  of  the  Linearized Col l is ion O p e r a t o r  Q 
and the  T r a n s f o r m a t i o n  o f  u4 ..... u 7 under  these Opera t ions"  

~4 ~5 ~6 U7 

Reflection Y (x --* -x)  - + - + 
Reflection X (y ~ -y )  - + + + 
Rotation n/3 ~ -- + 
Rotation 2~/3 ,~ + + 
Rotation n + + -- + 

a The double arrow means that u 4 is written as a linear combination of 
u4 and u 5 and vice versa under rotations of ~/3 and 2n/3. For six-bit 
models the table remains valid except for the last column (see text). 



Staggered Diffusivities in LGCAs 

Table I1. Eigenvalues of the Linearized Collision Operator 
for the FHP Models ~ 

291 

~1~ U2~ ~3 U4~ U5 ~6 N7 

FHP-I 0 3f(1 _f)3 6f2(1 _f)2 __ 
FHP-I' 0 3~:(1 + 2K) 6~: 2 --  
FHP-II 0 f(1 _f)3 (7- 4f) 3f(1 _f)2 (3f2 4f+ 3) 7f(1 _f)4 
FHP-III 0 K(7 - 8~c) 3~c(3 - 4K) 7to(1 - 2K) 

The FHP-I' model is a self-dual model constructed with the collision rules (200), (300), 
(320), and (400) of Table 1 of ref. 15. K is defined as f(1 - f ) .  

For example, the shear viscosity in (3.10) for all F H P  models is simply 

q _ = v _ ~ u 4 (  1 ~)  1 1 1  (4.3) 
p 0 u4=~24  8 

where Z/~c = 52, cZx = 3. Similarly, we obtain from (2.8) and (3.10) that the 
bulk viscosity vanishes for the FHP-I  model and is given by 

}) , , 1  ,44, 
p 3 b/7 ~ 1t7 14 2 7 28 

in FHP-II  and III models. 

5. M E A N  F I E L D  V A L U E S  O F  S T A G G E R E D  D I F F U S I V I T I E S  

To evaluate the staggered diffusion coefficients ~1 and ~2, we 
investigate the symmetry properties of the matrix A + f2 = ( - ) 1 +  0.c+ 
1 + Q appearing in (3.9). By symmetry, ~1 and 42 are the same for 0, 0', 
and 0". It is convenient to choose a special coordinate system in which 
Cio = Ciy and ci• = c,x. Then A is invariant under reflection in the y axis 
(x ~ - x )  because 0.  e = cy does not change its sign, but also under reflections 
in the x axis because 0.  e changes its sign, but ( - ) o . c  does not. The matrix 
A is no longer invariant under n/3 rotations. The analog of Table I is 
Table III. It shows how the vectors Ul,..., u7 change under transformations 
which leave f2 + A invariant. Then, the invariant subspaces are {u3}, {u4}, 
{u2, u6}, {u~,u5} for the FHP-I  model and {u3}, {g/4}, {u2, g/6}, 
{Ul, us, u7} for the FHP-H and III models. Moreover, the vectors u3 and 
u4 are eigenvectors 

( O + A )  u3 =f2u3 = 0  (5.1) 

(f2 + A) u4 = (2u4 = -24u4 (5.2) 
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The Same as in Table I for the ( s  Operator" 
i i .  m 

b/1 //2 I/3 //4 /'/5 //6 //7 

R e f l e c t i o n  Y (x  --+ - x )  + - + - + - + 

R e f l e c t i o n  X ( y  ~ - y )  + + - - -  + + + 

" N o w  all t h e  v e c t o r s  a r e  d i s p l a y e d  b e c a u s e  u~, u2, a n d  u 3 a r e  n o  l o n g e r  e i g e n v e c t o r s  of  

(0+4). 

where the explicit form of the diagonal matrix Ao.=Ai6 ~ with Ai= 
(2, 2, 0, 0, 2, 0, 0) for the seven-bit models. In the six-bit models, the first 
component of A~ above is simply dropped. 

Equation (5.2) shows that the current u4=cxcy is a simultaneous 
eigenfunction of (/2 + A) and s with the same eigenvalue. Consequently, 
the shear viscosity rl/p in (4.3) and the staggered diffusion coefficient r are 
equal for all F H P  models, and given by 

1 P 3/,14 - -  ~/4 -- 4 24 8 

The calculation of 32 in (3.9) is somewhat more involved because 
C2o = cZy is not an eigenfunction of ((2 + A). From the symmetry properties 
of the different subspaces we deduce for the six-bit models that 
(f2+A) -~ ey2 lies in the {u~, us} subspace 

(O+z l )  I c2y_=alul+asus (5.4) 

We multiply this equation with u~((2 + A) and u5(12 + A), respectively, and 
calculate the matrix elements A ll =A~s =A55 =4,  where A~= u~, Au~ are 
the matrix elements of zl in the representation (4.1) and (4.2). Then we 
obtain two coupled linear equations with solution a5=3/225= 3/4-a~. 
The staggered diffusivity 32 in the six-bit models follows then from (3.9), 
(5.3), and (4.2), with the result 

9 

where 2 s for FHP-I  and its self-dual extension FHP-I '  are given in 
Table II. 

In the seven-bit models we deduce similarly 

2 b lu lq_bsusq_bvu7 (5.6) (O +zl)  - 1 % =  
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The three coupled linear equations are solved for bl, b5, b7 and Eq. (5.6) 
is inserted into (3.9). This yields for the staggered diffusivity in the 
seven-bit models 

63 (2 - -25 ) (2 -27 )  
42 = y 1425 + 427 - 92527 (5.7) 

with 25 and 27 given in Table II for the FHP-II and FHP-III model. For 
the special case of the FHP-III model these results agree with those of 
Zanetti. 

A comment should be made about the first Enskog approximation to 
the staggered and standard transport coefficients in (3.9) and (3.10). It 
comes down to assuming that the current w(c) in (3.10) and the currents 
CxCy and c 2 in (3.9) are approximate eigenvectors of f2 and (f2 + A), respec- 
tively. In the models discussed here w(c) and CxCy are exact eigenvectors of, 
respectively, G2 and (2 + A. So the first Enskog approximation gives here 
the exact result for q, ~, and 31. 

For most intermolecular potentials the first Enskog approximation is 
an excellent approximation (correct within a few percent) to calculate 

, , I , , - ,  , , F , , , , , , , ~ , , 0 . 4  

/ 

/ 

/ 

/ 

/ 

/ 

t 
f 

J 
J 

J 

/ 

/ 

/ 

/ 

/ 

0.3 

i p i p P i i i J I i i i i I i = i i I ~ i i i 0 , ~  

0 . 0  0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  

f 

F i g .  1. T h e  k i n e t i c  p a r t  ~ o f  t h e  s t a g g e r e d  d i f f u s i v i t y  d e f i n e d  in  E q .  ( 2 . 6 )  v e r s u s  r e d u c e d  

d e n s i t y  in  t h e  s e l f - d u a l  F H P - I I I  m o d e l .  T h e  s o l i d  l ine  c o r r e s p o n d s  t o  t h e  e x a c t  B o l t z m a n n  

v a l u e  a n d  t h e  d a s h e d  l ine  t o  t h e  f irs t  E n s k o g  a p p r o x i m a t i o n .  B o t h  c u r v e s  c o i n c i d e  in  t h e  

l o w - d e n s i t y  l i m i t  ( f ~  0 ) .  
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viscosities, heat conductivity, and diffusion coefficients. ~ To test this 
approximation on the staggered diffusivity r in (3.9), we assume that 
( f2+A)-I  2,,~AC2y with A-1 c2(t-2+A 2 2 2 Cy- = )Cy/CyCy. Proceeding then in the 
same manner as in (5.4) and (5.6), we obtain the first Enskog approxima- 
tion to Ck 2 in the FHP-III model, i.e., 

~CE2 - -  ~P2 = F4JC( I  __ 4 / s  i (5.8) 

The left-hand side of (5.8) is plotted in Fig. 1 versus the reduced density f 
and compared with the exact Boltzmann value (5.7). As f ~  0, the quantity 

k [~2]cz approaches ~ ,  as can be seen analytically from (5.7). However, at 
higher densities the first Enskog approximation to ~2 k is a very poor 
approximation. It is typically 50--80% larger than the exact value (5.7). 

In summary, we have presented in this paper a simple method to 
compute both the standard and the staggered diffusion coefficients directly 
from the Green-Kubo relations. The method exploits the symmetries of 
the collision rules and, consequently, of the underlying lattice. It can be 
extended to the FCHC and the temperature-dependent nine-bit model with 
minor changes. The results for these models will be presented elsewhere. 
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